Lidar optics & mechanics system

Lidar is a remote sensing technology that measures distance by illuminating a target with a laserand analyzing the reflected light. Although thought by some to be an acronym of Light Detection And Ranging, the term lidar was actually created as a portmanteau of "light" and "radar". Lidar is popularly used as a technology to make high-resolution maps, with applications in geomatics, archaeology, geography, geology, geomorphology, sismology, forestry, remote sensing, atmospheric physics, airborne laser swath mapping (ALSM), laser altimetry, and contour mapping.


Initially based on ruby lasers, lidar for meteorological applications was constructed shortly after the invention of the laser and represent one of the first applications of laser technology. Lidar technology has since expanded vastly in capability and lidar systems are used to perform a range of measurements that include profiling clouds, measuring winds, studying aerosols and quantifying various atmospheric components. Atmospheric components can in turn provide useful information including surface pressure (by measuring the absorption of oxygen or nitrogen), greenhouse gas emissions (carbon dioxide and methane), photosynthesis (carbon dioxide), fires (carbon monoxide) and humidity (water vapor). Atmospheric lidars can be either ground-based, airborne or satellite depending on the type of measurement.